Salivary Glands - Definition, Types, Location, Size, Ducts, Diagram, Characteristics, Secretion, Structure and Function

Salivary Glands – Definition, Types, Location, Size, Ducts, Diagram, Characteristics, Secretion, Structure and Function

Salivary glands are exocrine glands responsible for saliva secretion. They have acinar cells for saliva synthesis and ductal cells for transport. Myoepithelial cells aid saliva movement. Major glands include parotid (largest), submandibular, and sublingual (smallest). Ducts are Stensen’s (parotid), Wharton’s (submandibular), and multiple (sublingual). Saliva lubricates, digests, and protects. Understanding their structure and function is vital.

Salivary Glands – Definition, Types, Location, Size, Ducts, Diagram, Characteristics, Secretion, Structure and Function Read More
Gastric Glands - Location , Structure, Types, Secretion and Functions

Gastric Glands – Location , Structure, Types, Secretion and Functions

Gastric glands, present in the stomach lining, play an important role in digestion. Structurally, they are made up of different cell types, including parietal, chief, and mucous cells. These glands secrete gastric juice, which consists of hydrochloric acid, pepsinogen and mucus. The secretions help break down food, sterilisation of ingested pathogens and absorb essential nutrients, thus fulfilling important functions in the digestive process

Gastric Glands – Location , Structure, Types, Secretion and Functions Read More
peristalsis / perstaltic movement

Peristalsis-  The Rhythmic Journey Through Your Body

Peristalsis is a vital biological process that facilitates the movement of food through the digestive system. It involves rhythmic contractions of smooth muscles, creating a wave-like motion known as peristaltic waves. These waves propel food through the digestive tract and ensure efficient digestion and absorption of nutrients. Peristaltic movements are coordinated by the enteric nervous system and provide the motility necessary for proper gastrointestinal function.

Peristalsis-  The Rhythmic Journey Through Your Body Read More
emulsification of fats in digestion

Emulsification of Fats

Emulsification of fats is an important process in digestion in which large globules of fat are broken down into smaller droplets. This process is carried out by bile, a substance produced by the liver and stored in the gallbladder. Bile emulsifies fats by acting as a detergent, breaking down the fat into smaller droplets that can be easily digested and absorbed by the body. Without this process, the digestion and absorption of fats would be much less efficient.

Emulsification of Fats Read More
Endocytosis and Exocytosis - Differences , Similarities ,Roles, Steps , Types

Endocytosis and Exocytosis – Differences , Similarities ,Roles, Steps , Types

Endocytosis and Exocytosis are cellular processes used to move molecules in and out of cells, respectively. Endocytosis involves the formation of a vesicle to engulf and transport molecules into the cell, while exocytosis involves the fusion of a vesicle with the plasma membrane to release molecules out of the cell. These processes play important roles in nutrient uptake, waste elimination, cell communication etc.

Endocytosis and Exocytosis – Differences , Similarities ,Roles, Steps , Types Read More
What is Endocytosis

Endocytosis -Definition, Mechanism, Types, Examples

Endocytosis is a cellular process by which cells absorb molecules and particles from the external environment by engulfing them within a vesicle. There are three main types of endocytosis – phagocytosis, pinocytosis, and receptor-mediated endocytosis. Endocytosis plays a crucial role in nutrient uptake, immune defence and cellular signalling. Examples of endocytosis include the uptake of bacteria by immune cells and the absorption of nutrients by intestinal cells.

Endocytosis -Definition, Mechanism, Types, Examples Read More

Human Circulatory System

The human circulatory system is responsible for delivering oxygen, nutrients, and hormones to cells and tissues throughout the body. It consists of the heart, blood vessels and blood. The heart pumps oxygenated blood to the body through arteries and the deoxygenated blood returns to the heart through veins. The circulatory system also helps remove waste products from cells and helps regulate body temperature.

Human Circulatory System Read More
Ascent of Sap- explained in details

Ascent of Sap

The Ascent of Sap is the movement of water through the Xylem vessels from the roots to the leaves. It is essential for various processes such as photosynthesis, transpiration and respiration. The cohesion-tension theory is widely accepted to explain the mechanism of the Ascent of Sap, where water moves up through the Xylem vessels due to a combination of transpiration and cohesive forces. Factors such as temperature, humidity, and wind affects Ascent of Sap

Ascent of Sap Read More
blood coagulation - blood clotting

Blood Coagulation (Blood Clotting)

Blood coagulation or blood clotting is a complex process that prevents excessive bleeding after an injury. It involves platelets, clotting factors, fibrin, and endothelial cells and occurs in a series of steps including vasoconstriction, platelet activation, the coagulation cascade, clot retraction and fibrinolysis. There are many clotting factors involved in coagulation. Disruptions to any of them can lead to bleeding disorders or unwanted blood clots.

Blood Coagulation (Blood Clotting) Read More